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In physics a number of approaches are possible in order to arrive at a comprehensive, unified
theory describing a maximum number of observable phenomena. 

One such possibility would be the geometrization of physical structures described in the two
volumes "Elementarstrukturen der Materie" ["Elementary Structures of Matter" (1) and (2)]. Its
evident advantage is the fact that in this treatment space and object are no longer foreign to
each other. Instead, an object now appears as a specific metric structure of space. A
consequence of this is the unity of field and field source. The first attempt al such a
geometrization, applied to the gravitational field, was carried out by A. Einstein in his general
theory of relativity, later on extended by Kaluza, Klein, and Penrose, but also by P. Jordan and
others. 

The theory of supergravity and superstring theory may be regarded as successors to the
Kaluza−Klein model. At present, superstring theory is being further developed in the hope of
attaining a unified description in a 10−dimensional space, R10, of the 4 empirically known
interactions. However, it is not clear how the predictions of this theory, involving particle masses
of some 1018GeV, can be verified in view of the limitations of present−day high energy
experiments. Here a radical geometrization of space as described in (1)1 and (2) appears to lead
to more suitable results that may readily be compared with observation. 

An entirely different approach to the unified description of nature by the use group theoretical
arguments has been applied with some success to the unification of the 4 known elemenlary
forces. So far it has not been possible to verify these theories experimentally, especially since
the resulting mass spectrum of elementary particles involves much too high energies. In
addition, there is a lack of predictions concerning quantum numbers of resonance spectra
representing these masses and about their upper limits. 

Extending the ideas of Einstein, Kaluza, Klein and Jordan the theory described in this report
shows how to geometrize in principle not only the gravitational field but the other force fields as
well. They appear as geometrical structures of space−time, R4, (a Minkowski space with x4 = ict)
subject to the usual conservation laws, and lead to a general non − Hermitian geometry in R4.
The covariant components of the corresponding triple index symboIs, Γγ

αβ, representing
generalized Christoffel symbols, can be split in to a Hermitian and an anti− Hermitian part, but, in
contrast to Riemannian geometry, they cannot in general be expressed explicitly in terms of
derivatives of the fundamental metric tensor unless additional conditions are introduced.
However, since such conditions reduce the generality it is not known whether they are at all
admissible from a physical point of view. Thus, the Γ−symbols are to be treated as components
of a unified field of metric structures. 

A transition to the microscopic region by use of the correspondence principle turns the unified
field components into true tensor components with respect to the group of one−to−one,
continuous, and non−singular coordinate transformations (Poincaré−group), with mixed covariant
and contravariant indices. This also applies to the macroscopic range, where a unique set of
metric structures corresponds to each type of field (gravitational, e.m.) Different fields,
characterized by different conservation laws, lead to different geodetic conditions. 

On passing over to the microscopic range the , Γγ
αβ, −symbols, which are non− Hermitian in their

covariant indices, transform into components , ϕγ
αβ, of a tensor field with mixed indices. The



condition ϕγ
αβ =0 can only be satisfied if the corresponding R4 is completely unstructured. In the

microscopic range the phenomenological energy density leads to a discrete set of eigenvalues
and eigenfunctions, λ(γ)(αβ) ϕ(γ)αβ, characterizing a discrete spectrum of metric structures
(parantheses around γ denote suspension of the summation convention). The concept of energy
density appears in geometrized forrm because phenomenologicaI energies are time derivatives
of action. so that spatial energy densities ultimately are space−time−dependent action densities.
Hence, due to the classical quantization of actions it is impossible in the Iimit to make the
transition to diffierential quotients. This implies the necessary existence of a smallest geometric
unit.

The nonlinear and non−Hermitian equations of state satisfied by the R4 −structures ϕγ
αβ exhibit

algebraic symmetries such that 28 out of the total of 43 = 64 relations for λ(γ)ϕ(γ)
αβ always remain

empty. Thus, 36 equations lead to relations λ(γ)ϕ(γ)
αβ ≠ 0. while the empty level spectra of

geometrical structures with λ(γ)ϕ(γ)
αβ = 0 require that λ(γ)(αβ) = 0 because ϕγ

αβ ≠0. The fact that
geometrical structures in the microscopic range vary in discrete steps is the equivalent of the
well−known discrete level structure of energy densities, so that the 36 non− zero components
must of necessity form a tensor scheme having 6 rows and columns. In accordance with tensor
algebra this requires R4 to be a subspace of a 6−dimensional reference space, R6. The new
coordinates. X5 and x6, are imaginary,  like x4. 

The appearance of two new coordinates indicates that the limitation of quantum theory to 4
coordinates may be too restrictive. After all, space and time are only aspects of human
perception (I. Kant). lt should be mentioned that, since the R6 −coordinates are obtained on the
basis of conservation laws and energy relations, R6 must be regarded as referring to the material
world with x5 and x6 having to be interpreted as organizational coordinates of material structures
in R4. 

A proof of existence shows that the eigenvalues λγ= λ∗
γ actually exist, but there appears a further

symmetry, indicating the vanishing of an additional 12 of the remaining 36 componets of the
macroscopic energy density tensor. These are the 4− 3 space like elements occupying the upper
half of columns 5 and 6 and the left half of rows 5 and 6 of the tensor. This is to be expected on
the basis of macroscopic physics. Furthermore, it has led to the following law governing the
number of possible dimensions in hyperspace: If p ≥ 0 dimensions of an Rp are empirically given,
then there exists a reference space Rn containing Rp, n being an integer, such that the condition 

(n−1)2 − 1 = p (p−1) (p−2)

is satisfied. For p = 0, 1, and 2 the positive branch of this equation gives n = 2, while the
negative branch gives n = 0. However, the latter is irrelevant for all p > 2. Finally, the equation is
not satisfied for p = 3, p = 5, and all p > 6. For p =4, on the other hand, i.e. for space−time, n
actually turns out to equal 6. Furthermore, for the material world, Rp with p = 6, there exists a
hyperspace with n = 12, containing R6 as subspace, which in turn contains the subspace R4. The
concepts of energy and matter defined in R4 are no longer defined in the coordinates x7...x12,
which again are imaginary, but the concept of volume still is. The discussion in volumes [1] and
[2] is confined to a semi−classical treatment of the material world R6, because the nonlinear,
non−Hermitian R4−relations are readily transferred to R6, where they become completely
Hermitian. 

In order to derive the smallest geometric unit mentioned above it is necessary to consider a
universal background phenomenon. A suitable quantity is the general inertia of all masses, which
always is equivalent to gravitational phenomena according to the principle of equivalence. A
phenomenological dynamics of gravitation is derived in [1], which, together with a selfconsistent
treatment of the massequivalent of the gravitational field energy, leads to the description of a
scaIar field function ϕ by means of a non−linear system of equations, which formally agrees with
the nonlinear structural relations of R6. For constant x4, x5, and x6 the function ϕ(x1,...,x6) then
becomes ϕ(x1,x2,x3) of R3. 

ϕ is a real, positive gravitational potential (potential energy per unit mass), satisfying a nonlinear
differential equation, which can be solved in spherical geometry and results in a transcendental
algebraic equation for ϕ. The solution shows that ϕ remains real only between the limits R− and
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R+, where R− corresponds to the Schwarzschild radius and R+ to the Hubble radius. In the range
of relatively small distances (planetary systems) ϕ is almost exactly proportional to 1/r and hence
practically identical to Newton’s law of gravitation. This changes, however, in the range of very
large distances, because there exists a limit, p, of the attractive gravitational field, lying between
R− and R+ at which ϕ goes to zero. This limit depends on the cube of the mean atomic weight of
the field source according to A3 p = 46 Mpc. Beyond p the field becomes weakly repulsive before
definitively going to zero at R+. 

A single elementary particle is characterized not only by p and the limiting distances R+−of its
gravitational field, but also by its Compton wavelength. R− vanishes in empty space when the
mass of the field source approaches zero, while R+, p, and the Compton wavelength all diverge.
However, since the smallest geometrical unit must be a real number and a property of empty
space its value has to remain finite. As shown in [1], only a single product having this property
can be formed from the 4 characteristic lengths above. The result is an area, τ, bounded on all
sides by geodesics, whose present numerical value is τ ≈ 6.15x10−70 m2. This quantity, called a
metron, represents the smallest area existing in empty space and requires the differential
calculus to be replaced by a calculus of finite areas. Accordingly, a whole chapter in [1] is
devoted to the development of a difference calculus considering the finite area of τ . This
enables any differential expression to be metronized. It follows that in any subspace Rn, whose
dimensionality n is divisible by 2, the geometrical continuum is replaced by a metronic lattice
formed by n−dimensional volumes bounded on all sides by metrons. Thus, R6 and R12 are 6−
dimensional and 12−dimensional metronic lattices, respectively. Since all dimensions are
metronized, even time proceeds in finite, calculable steps. By the use of a difference calculus it
becomes possible to consider τ in the nonlinear system of geometric structures in R6. 

While the τ are always bounded by geodesics, their area remains constant in a deformed lattice.
The metronized state function then describes the projection of a deformed R6−lattice into any
Euclidian reference space, where the metrons now appear in distorted or "condensed" form, in
analogy to the projection of a curved lattice onto a plane sheet, or to lines of constant altitude on
a map providing information on the level structure of a mountain range. In this respect there
seems to exist a certain analogy to Regge poles. The metronic system of equations itself has the
character of a selection principle, selecting out of a multiply infinite manifold of possible R6

−structures the ones whose projections into R4 describe elementary material processes of the
physical world. The operator performing this selection is called the "world selector". 

Further analysis shows that the world selector separates out 4 sets of solutions, denoted by a, b,
c, and d, involving 3 subspaces: A 2−dimensional subspace S2(x5,x6), depending only on the two
organizational coordinates, a subspace T1(x4), describing structures in time, and a subspace
R3(x1,x2,x3) of physical space. 

A different set of coordinates is involved in each of the 4 structures a−d mentioned above: a
depends on x5 and x6, b on x4, x5 and x6 c on x1,x2 x3 x5 and x6 and d depends on all 6 coordinates
x1...,x6. In every one of these combinations the coordinates are always grouped into subspaces
S2, T1 and R3. Note that the organizational coordinates x5 and x6, constituting S2, appear in all
elementary structures. 

A sort of hermeneutics (from hermeneuo: to interpret) of the world geometry, or hermetry for
short, is required for interpreting the forms a to d: a represents structures outside of R4, which do
not in general have a physical interpretation. However, when projected into R4 they appear as
graviton fields. The world lines belonging to elements of b all lie on the two−fold light cone in R4.
For this reason they always travel with the velocity of light in R3 and are to be interpreted as
photons. Hermetry forms c and d are characterized by the inclusion of the real subspace R3,
leading to inertia and hence to rest mass, in contrast to a and b, c is interpreted as referring to
neutral particles, while d refers to charged ones. In the case of d a coupling appearing between b
and c characterizes the charged condition. It was possible to derive a simple relationship for an
elementary charge determined by the quantum principle, whose numerical value deviates by
0.125% from the experimental electron charge. 

In addition, a general mass spectrum can be derived, whose terms turn out to lie so close
together that for all practical purposes they approach a continuum. This is entirely due to the fact
that the spectrum is a superposition of energy terms of all hermetry forms. Thus, the practically
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continuous spectrum of the massless a − and b−terms is superimposed on the discrete
spectrum of hermetry forms c and d. For this reason a "term selector" is required for separating
out the discrete mass spectra. Independently of this it is possible to derive the lower bounds of
spectra c and d and to express them in terms of natural constants. They are R3−structures
representing the smallest masses, with d yielding the electron mass and c resulting in a neutral
particle whose mass is about 0.1% smaller than that of the electron. 

As shown in [2], the upper reality bound, R+, of the gravitational field increases with diminishing
field source, i.e. the largest value of R, Rmax, results from the smallest rest mass. Thus, 2Rmax≡ D
is the greatest possible distance in R3. It is defined in [2] as the diameter of the universe and
depends entirely on natural constants. These constants disappear if the expression for τ is
substituted into the formula for R, and there results a higher order algebraic expression for the
dependence of D on τ, referred to in [2] as the cosmological relation. Astrophysical reasons
require D > 0, where D is the time derivative, which in turn results in τ < 0. Thus, as cosmic time
progresses the metronic mesh size shrinks, while the universe expands. 

Going back in time, D decreases while τ increases. This ends when τ → τ0 encompasses a
"proto universe", whose diameter, D0, is given by 2π∆2

0 = τ0. Since τ cannot become smaller, this
represents an initial event in R4, beyond which there is no past. This instant has, therefore, been
defined as the moment t = 0 of the cosmogonic origin. By employing an appropriate substitution
D(τ) becomes the solution of a 7th order algebraic equation. At t = 0 and at the end of time, t ≡ θ
< ∞, the equation has 3 real positive, 3 real negative, and one complex solution for D. The
positive solutions are interpreted as the diameters of 3 primordial spheres emerging and
expanding, one after another, after t = 0. The spheres mark the boundaries of the expanding
universe, their calculated separations in time shrinking to very small values, but never to zero, as
cosmic time advances. After D reaches a maximum value, contraction sets in. Finally, at the end
of time the trinity of spheres, now having diameters corresponding to the 3 negative solutions,
disappear one after another. 

A long time after the initiation of cosmic motion at t = 0, presumably after the appearance of
matter, a symmetry break of global groups leads to the deveIopment of 3 geometric units ki ≠ ki*,
i = 1, 2, 3, (ki, is a 6x6 tensor) in the sense of tensorial integrands of integral operators. Tensor
multiplication and taking the trace according to the metronic difference calculus results in
generally non − Hermitian partial metric tensors gij = Tr(ki. x kj.) forming the elements of the full
metric tensors, γa, − γd . Since the 3 tensors ki, go back to the 3 primordial spheres, every
elementary particle retains a memory of the cosmic origin. 

The metric units ki depend on the hermetric subspaces of according to (S2), k2(T1), and k3(R3).
Corresponding to the 4 hermetric forms a−d one can now form 4 generalized metric tensors γa−γd

from the partial tensors g defined above. If k1(S2), k2(T1), and k3(R3) all differ from E (unit matrix)
the resulting γd(S2,T1,R3) depends on all 6 coordinates and represents hermetry form d. γc(S2,R3),
belonging to the spacelike hermetry form c, is obtained by putting k2(T1) = E. In similar manner
the timelike metric tensor, γb(S2, T1), for hermetry form b is obtained by putting k3(R3) = E. Finally,
γa,(S2) for hermetry form a results from k2(T1) = k3(R3) = E. γd has 9 independent elements, γc and
γd both have 6, and γa has 2, representing respectively 9 − fold, 6 − fold, and 2−foId metrics.
These polymetric structures combine to form the Hermitian metric field of the "condensor", which
is also Hermitian. The condensor is an operator projecting a deformation in the 6 − dimensional
metronic lattice of R6 into R4, where it appears as an intricate, geometrically structured,
compressed or "condensed" lattice configuration. This condensed, structured region is what we
call matter constituting an elementary particle, as described in more detail below. 

Thus, both the world selector and the condensor describing the internal particle structure can be
split up in a manner allowing a system of partial metrics to be specified for each hermetric form.
An appropriate choice of indices (ij) then resuIts in a solution of the general energy spectrum
corresponding to a separation of the discrete spectra c and d. These solutions actually yield
discrete spectra of inertial masses, showing good agreement with measured particle and
resonance spectra. 

The following picture regarding the spectrum of elementary particles found in high energy
experiments emerges from the theoretical analysis above: 
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Elementary particles having rest mass constitute selfcouplings of free energy. They are indeed
elementary as far as their property of having rest mass is concerned, but internally they possess
a very subtle, dynamic structure. For this reason they are "elementary" only in a relative sense.
 
Actually, such a particle appears as an elementary flow system in R6 (equivalent to energy flows)
of primitive dynamic units called protosimplexes, which combine to form flux aggregates. The
protosimplex flow is a circulatory, periodic motion similar to an oscillation. A particle can only
exist if the flux period comprises at least one full cycle, so that the duration of a particle’s stability
is always expressible as an integer multiple of the flux period. Every dynamical R6−structure
possible constitutes a flux aggregate described by a set of 6 quantum numbers. All of them,
however, result from an underlying basic symmetry of very small extent, essentially determined
by the configuration number k, which can only assume the values k = 1 and k = 2. The
empirically introduced baryonic charge then corresponds to k − 1, i.e. k =1 refers to mesons and
k = 2 to baryons. 

The physically relevant parts of an R6 − flux aggregate are its k+1 components in the physical
space, R3, which are enveloped by a metric field. Thus, mesons contain two and baryons three
components. Evidently, there exists an analogy to the empirically formulated concept of quarks.
If this is true, then quarks are not fundamental particles but non − separable, quasi − corpuscular
subconstituents in R3 of a mesonic or baryonic elementary particle. In this picture the condition of
quark "confinement" is unnecessary. The significance of a possible "quantum chromodynamics"
will have to be derived on the basis of a unified description of possible interactions. This problem
is being investigated in [3]. 

Responsible for the inertial mass are the protosimplexes, i.e. the basic building blocks of flux
aggregates, which form the structures of the k+1 subconstituents in R3. They compose 4
concentric spherical shell−like configuration zones maintaining a dynamical equilibrium, during
whose existence there appears a measurable particle mass. However, an attempt to measure
the mass of a subconstituent part by scattering experiments will result in a very broad, variable
bandwidth of measurements, because such a mass depends on the instanta − neous flux phase.
The sum of the k+1 subconstituent masses, on the other hand, is constant and gives in essence
the measurable particle mass. The relevant quantity in this connection is the degree to which the
4 configuration zones in R3 are occupied by dynamic flux elements. 

For k =1 and k = 2 there are altogether 25 sets of 6 quantum numbers each, characterizing the
occupation of configuration zones and the corresponding invariant rest masses. The particles
belonging to these invariant basic patterns are in turn combined into several families of spin
isomorphisms, in which the spatial flux dynamics of the configuration zones is in dynamic
equilibrium. 

In all these terms there exists a single basic invariant framework of occupied zones, depending
only on whether k = 1 or k = 2. Substituted into the mass formula derived in [2] this reproduces
the masses of electron and proton to very good accuracy. The masses of all other ground states
are produced in similar quality. However, the mass formula contains ratios of coupling constants,
which could not at the time be derived theoretically and therefore had to be adjusted to fit
experiments carried out at CERN in 1974. Only in [3] has it become possible to derive the
coupling constants from first principles, but a revised set of particle masses has not yet been
calculated. 

It seems that the lifetime of a state depends on the deviation of its configuration zone occupation
from the framework structure mentioned above. It is conceivable, in analogy to the optically
active antipodes of organic chemistry, that there exist isomers with spatial reflection symmetry
also in the area of flux aggregates, giving rise to variations in lifetime. Perhaps the two equal−
mass components of the K0 − meson, K 0

s and K0
L, are to be interpreted in this way. 

Finally, the requirement that empty space be characterized by vanishing zonal occupations and
electric charge states leads to some masses in the case of k = 1, which may be interpreted as
neutrino states. However, these refer neither to rest masses nor to free field energies (in analogy
to photons), but to quantum − like "field catalysts", i.e. particles able to catalyse nuclear
reactions that otherwise wouid not take place. They transfer group theoretical properties, arising
from the sets of quantum numbers, through physical space. 
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The formula derived in [2] for the spectrum of elementary particles also depends on an integer N 
≥ 0, where N = 0 refers to the 25 ground state masses. For N > 0 the sets of quantum numbers
again yield masses, which now denote resonance excitations of the basic structural patterns to
states of higher energy. According to the dynamics of configuration zones only a single set of
zonal occupations is possible for each N. Evidently, the corresponding masses represent short −
lived resonance states, for all measured resonances appear among these spectra. In each case
N is limited, since for every set x of quantum numbers there exists a finite resonance limit, Gx<
∞, such that the closed intervals 0 ≤ N ≤ Gx< ∞ apply to every resonance order N, including the
ground state. 

Out of the relatively large number of logically possible particle masses presentday high energy
accelerator experiments only record the small subset of particles whose probabilities of formation
(depending on experimental conditions) are sufficiently large. What evidently still is lacking is a
general mathematical expression relating these probabilities of formation to particle properties
and experimental boundary conditions. 

The theory developed in [1) and [2] represents a semi − classical investigation. A third volume,
entitled "Strukturen der physikalischen Welt und ihrer nichtmateriellen Seite" (Structures of the
Physical World and its Non − Material Aspect), [3], presently in print, leads beyond the semi −
classical domain to a dynamics in the hyperspace of R12. 
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