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Introduction 
 
   After DESY physicists in 1982 had programmed and calculated the mass formula which was 
published in the book Elementarstrukturen der Materie (Heim 1984), the mentioned formula by 
B. Heim was extended and in 1989 a 57 pages report with a new formula and the results of the 
calculations were sent to the company MBB/DASA. Unfortunately this later code could no more 
be recovered today. 
   Parts of these formulae have now been programmed again by the research group „Heim 
Theory“ (by Dr. A. Mueller). It was found that in the manuscript some brackets in very long 
equations were lost during the process of writing; this had to be corrected at best estimate. The 
code covers the masses of basic states only and no lifetimes. 
   Other than the program written in 1982, Heim’s 1989 computation also includes the life times 
of the basic states, the neutrino masses, and the finestructure constant. Therefore, these equations 
shall be given here, as far as they deviate from those given in the manuscript in 1982. 
 
The structure distributor C (i.e. strangeness) given in eq. (I) of chapt. E has to be divided by k. 
One of the angles by which the time helicity ε is defined must read 
 
 αQ  =  π Q [Q + ( )2

P ] (B1) 
 
The expression for the quantum number of  charge other than in  (II) now reads: 
 
 qx  = ½ [ (P - 2x + 2) [1 - κQ(2 - k)] + ε[k - 1 - (1 + κ)Q(2 - k)] + C ]  (B2) 
 
All other constants are defined by eq.(I). 
 
 
1.  Mass of Basic States and of the Excited States of Elementary Particles 
 
   The modified mass formula of elementary particles is built up - other that in eq.(XII) - by the 
following parts: 
 
 M  =  µα+ [(G + S + F + Φ) + 4 q α - ]  (B3) 
 
   The parts G and S are the same as G and K in eq.(XII) (now using n, m, p  instead of n1, n2, n3); 
µ is the mass element as in eq.(VI). The constants α± have the form: 
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The calculated results for  α+  and  α - in  (B4)  are shown  in a table VI/chapterG. 
 
The abbreviations for F and Φ, which depend on the quantum numbers, read:  
 
 F  =  2 n Qn [1 + 3(n + Qn + n Qn) + 2(n² + Qn²)] +  (B5) 
 + 6 m Qm (1 + m + Qm)N2 + 2 p Qp N3 + ϕ (p,σ)∗δ(N) 
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 Φ  =  P(-1)P+Q (P + Q) N5 + Q(P + 1) N6  (B6) 
 
 ϕ  =  ϕ (p,σ) , δ(0) = 1 (0 for N ≠ 0) (B7) 
 
with 
 

ϕ  =  
N p

p
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²
( ) +P(P - 2)²(1 + κ(1 - q)/2αϑ )(π/e)²√η12(Qm-Qn) - 

 - (P + 1) ( )3
Q /α , (comp. with eq. B49) 

 
U =  2Z [P² + 3/2 (P - Q) + P(1 -q) + 4κB (1 -Q)/(3 - 2q) +  

 + (k - 1){P + 2Q - 4π(P - Q)(1 - q)/ 24 }] ηqk
 - ²  (comp. with eq. B50) 

 
and Z  =  k + P + Q + κ (comp. with eq. B51) 
 
   ϕ is a term of self-couplings, which depends on p and σ and essentially determines the life time 
of a basic state. ϕ appears only in the basic states; therefore the symbol δ(N) as a unit element is 
used. The functions Qi from eq. (X) remain unchanged. For n1, n2, n3, n4  in eq. (B5) here  n, m, 
p, σ  will be written. The constants ηq,k, ϑ  and  η  (with η10 = η, and ϑ 1,0 =ϑ ), as well as the 
functions N1 and N2 read as in eq.(IX). The remaining Ni with i > 2 are: 
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 N4  =  (4/k) [1 + q(k - 1)] (B9) 

 N5  =   A[1 + k(k - 1) 2k²+3 N(k) A 
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 A   =   (8/η)(1 -  α-/α+)(1 - 3η/4) (B11) 
 
 N(k)  =  Qn + Qm + Qp + Qσ + k(-1)k 2k²-1  (B12) 
 

 N6  = 2k/(π eϑ ) [ k (k² - 1) 
N k

k
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 N’(k)  =  Qn + Qm + Qp + Qσ - 2k -1 (B14) 
 
The calculated results for B8, B9, B10 and B13 can be found in a table VII/chapter G. 
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Let L be the upper barrier such that as soon as it is reached the filling of the zone x disappears 
and the foregoing zone filling of next higher order is  raised  by 1. With the symbols  L(x) (x - 1)  
for this barrier and  M0 = M(N=0)   the limits of the fillings of structure zones corresponding to 
eq.(XXXIII) are given by:  

 - Qn ≤  n  ≤  L(n)  =  
( )P M

N
Qn

+
−

+

1
2

0
3

1µα
 (B15) 

since in the case of the central region there are no further fillings. 
For the series of numbers  m  the limitation holds: 
 
 - Qm ≤  m  ≤  L(m)(n) (B16) 
 
with 2(Qm + L(m)(n))³ + 3 (Qm + L(m)(n))² + Qm + Lm(n)  =  4 N1(n + Qn)³/N2 (B17) 
 
Correspondingly, we have 
 
 - Qp ≤  p  ≤  L(p)(m) (B18) 
 

with 2 L(p)(m)  = 24 12

3

N
N

m Qm( )²+ + - 2Qp - 1 (B19) 

 
and -  Qσ ≤  σ  ≤  L(σ)(p) (B20) 
 
with 2 L(σ)(p)  = N3(p + Qp) - 2 Qσ (B21) 
 
The calculated results  for B15 can be found in a table IX/chapter G. 
 
   The selection rule which expresses the n, m, p, σ  by the quantum numbers  
k, P, Q, κ, q and N, is described by eq.(XXIX). 
 
   In that  f(N) is the excitation function for  N > 0. For the factor Wνx ≡ WN=0 , which is 
independent of the exciting state, holds: 
 
 WN=0  =  A ex (1 - η)L + (P - Q)(1 - ( )2

P )(1 - ( )3
Q )(1 - η )² √2 (B22) 

with 
 A   =   8 g H[2 - k + 8H (k - 1)] - 1 (B23) 
 H   = Qn + Qm + Qp + Qσ (B24) 
 g   = Qn² + Qm² + (Qp²/k)  ek-1 + exp[(1- 2k)/3] - H(k - 1)  (B25) 
 L   =  (1 - κ) Q (2 - k) (B26) 
 x   =  [1 - Q - ( )2

P ](2 - k) + 1/4B [a1 + k³/(4H)(a2 + a3/(4B))]  (B27) 
 B  =  3 H [k² (2k - 1)] - 1 (B28) 
 
The calculated results for B23, B24, and B28 can be found in a table VI/chapter G. 
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For the three parameters a1, a2, and a3  the following combinatorical relations hold: 
 
 a1  =  1 + B+ k(Q² + 1) ( )3

Q  - κ[(B - 1)(2 - k) - 3{H - 2(1 + q)}(P - Q) + 1] - 

  -  (1 - κ) [(3(2 - q) ( )2
P  - Q{3(P + Q) + q})(2 - k) + [k(P + 1) ( )2

P   + 

 +  {1 + B/k (k + P - Q)}(1 - ( )2
P )(1 - ( )3

Q ) - q(1 - q) ( )3
Q ] (k - 1)] (B30) 

 
 a2  =  B [1 - ( )3

Q (1 - ( )3
P )] + 6/k -  κ[Q/2 (B - 7k) - (3q -1)(k - 1) +  

  + ½ (P - Q){4 + (B + 1)(1 - q)}] - (1 - κ) [(P(B/2 + 2 + q)  -  
  -  Q{B/2 + 1 - 4(1 + 4q)}) (2 - k) + ( ¼ (B - 2){1 + 3/2(P - Q)} - (B29) 
  -  B/2 (1 - q) - ( )2

P [{ ½ (B + q - εqx) + 3  εqx}(2 -  εqx)  - 

  -  ¼ (B + 2)(1 -q)]) (1 - ( )3
Q )(k - 1) - ( )3

P [2 (1 + εqx) + 
  + ½ (2 - q){3(1 - q) + εqx - q } - q/4 (1 - q)(B - 4) - ¼ (B - 2) + 
  +  B/2 (1 - q)]] 
 
 a3  =  4 B y’/(y’+1) - (B + 4) - 1 (B31) 
 
with 
 y’ 2 B   =  κ[ η /k {4 (2 - √η) - π e (1 - η) η }{k + e η (k - 1)} + 

 + 
5 1

2 1
( )

( )
−

+ −
q

k k (4B + P + Q)] + (1 - κ)[(P - 1)(P - 2){2/k² (H + 2) +  

 + (2-k)/(2π)} + ( )2
P (1 - ( )3

Q )(q B/2 {B + 2(P - Q)} + {P (P + 2)B + 
 + (P + 1)² - q(1 + εqx) [k(P² + 1)(B + 2) + ¼ (P² + P + 1)] - 
 -  q (1 - εqx)(B + P² + 1)} (k - 1) + {(P - Q)(H + 2) + 
 +  P[5 B (1 + q) Q + k (k - 1) {k(P + Q)²(H + 3k + 1)(1 - q) - 
 - ½ (B + 6k)}]}(1 - ( )2

P )(1 - ( )3
Q ) + ( )3

P (2 - q) Q {εqx(B + 2Q + 1) + 

 + q/(2k)(1 - εqx)(2k + 1) + (1 - q)(Q² + 1 + 2B)}]  
 
The calculated results for B29, B30, B31 and B22 can be found in a table VIII/chapter G. 
 
For the excitation function  f  from eq.(XXXV) Heim got the expression 
 
 f (N)  = a N/(N+1)  + b N (B32) 
 
with the substitutions (α is the finestructure constant): 
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P
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 b  =  
1

2 2η ηqk qk

[αϑ  /8 (P² + 1)[ ½ (1 + η )(1 + η1,1 η1,2  (3/4) ( )3
P (k - 1)] + 

 + (k - 1) {ϑ 1,2/ϑ  - 8 ( )2
P (P² + 1 ) - 1}] - C (B35) 

 
 C  =  π (1 - η )² [1 + π (k - 1) + P/k³ (3/e + q(8 + ηqk) + 

 + (4 πe/ η )(1 - κ)[1 - q 
3

5
πη
ηe qk

] - 2(k - 1) ( )2
P (3 - P){2 e (η + ηqk)  }(B36) 

 +  εqx πe/(3 η ) } + 
8 1π κ

η η
e k e q

e
( )−

−








 )] + (2 e κ q/ η² )(2 - k)(1 - η)² 

 
   The excitations can lead to a change of  angular momentum. Since Q is the  double quantum 
number of angular momentum,  Q(N = 0) could change additive by an even number  2z with the 
integer function z(N), such that: 
 
 Q (N)  =  Q (N = 0)  +  2 z (N), (B37) 
 
where z(N) is yet unknown. 
 
   One has to hold in mind, that the σ-fillings of the external region of a term M(N) can get an 
additional excitation because of  their external character. If the zones nN, mN, pN, and σN are 
occupied and if 
 
 L(σ)(p)  =  ½ N3 (p + Qp) - 2 Qσ     with   - Qσ  ≤  σ  ≤ L(σ)(p) , (B38) 
 
is the complete occupation of the external region related to pN , then  
 
 KB  =  L(σ)(p) - σN (B39) 
 
describes a real number, which as a bandwidth determines the number of the possible excitations 
of the external field of an excitation state  M(N). For KB ≤ 0  there is no possibility of an external 
field excitation. 
 
   If  L(N)  describes the maximal  occupation of all the four structure zones 0 ≤ N ≤ L(N) < ∞, then 
the equation of the excitation limit is given by eq.(XXXV) and eq.(B32) with N = L(N). 
 
   If the quantum numbers k, P, Q, κ,  and qx , as well as the excitation N, are given for a basic 
state, then the right-hand side of eq. (XXXV), i.e.  
 
 (n + Qn)³α1

  + (m + Q 
m)² α2 + (p + Qp) α3 + exp[-(2k - 1) /3Qσ(σ + Qσ)]  =  

 = WN=0(1 + f(N))  (B40) 
 
with  α1 = N1 , α2 = 3/2 N2 , α3 = ½ N3, and eq.(B22) to eq.(B36) can be calculated numerically. 
 
By an exhaustion process based on 
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 w  =  WN=0(1 + f) (B41) 
 
n, m, p, and σ  can be determined using eq.(B15) to eq.(B21) and (B40). 
 
   Let be  K ≥ 1  the series of natural numbers. Then, first of all, w - K³α1  ≥ 0  will be formed. K 
will be raised as long as K = Kn changes its sign. Then Kn will reduced by 1, which results in: 
 
 w - (Kn - 1)³ α1 =  w1 (B42) 
 
The process will be repeated with w1 in the form  w1 - K² α2  ≥  0 . With  K = Km  
 
 w1 - (Km - 1)² α2 =  w2 (B43) 
 
will be generated. In the same way  w2 - K α3  ≥  0  yields the relation 
 
 w2 - (Kp - 1) α3 =  w3 (B44) 
 
and with the abbreviation  ß = (2k-1)/3Qσ  
 
 w3 - e -ßK  ≤  0  (B45) 
 
is determined, which changes its sign for  K = Kσ . Next,  Kσ will be reduced by 1.With the limits 
now known,  Kn  to  Kσ , the n, m, p, σ  can be calculated: 
 
 n  =  Kn - 1 - Qn m =  Km - 1 - Qm 
 (B46) 
 p  =  Kp - 1 - Qp σ =  Kσ - 1 - Qσ 
 
   With these quantum numbers  the mass formula (B3) with its parts eq.(B4) to eq.(B14) can be 
calculated. 
 
 
2.  The Average Life Times of the Basic States 
 
   Let be T the average life time of the masses of elementary particles determined by eq. (B3). If 
TN  = T(N) <<  T  is a function depending on N, so that T0 = 0  for N = 0, then according to Heim 
the unified relation for the times of existence is:  
 
(T - TN)  = 

 = 
192

1 1 12 2 1 1 1 2 0

hHy

Mc H n m p n m p ß²[ ( )²( )²( )²]( )( ), , , ( )η η η η σ− − − + + + + + +
δ 

 (B47) 
 
where  δ = δ(N)  is as in eq.(B7) .M is taken from eq.(B3), and H from eq.(B24). The substitution  
y  is given by: 
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 y  =  F [ϕ + (-1)s (1 + ϕ)(b1 + b2/WN=0)] (B48) 
with 

 ϕ  = 
N p

p
4

1
²
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σ

σ
σ+

+
− =

−Q
BUWN1

2 44
0

1

²
( ) + P (P - 2)²(1 + κ(1 - q)/(2αϑ )) 

 (π/e)²√η12(Qm-Qn) -- (P + 1) ( )3
Q /α , (B49) 

 
 U =  2Z [P² + 3/2 (P - Q) + P(1 -q) + 4κB (1 -Q)/(3 - 2q) + (k - 1){P + 2Q - 
 -  4π(P - Q)(1 - q)/ 24 }] /ηqk² (B50) 
 
and Z  =  k + P + Q + κ  (B51) 
 
The calculated results for B48 and B49 can be found in a table IX. 
 
B will be calculated from eq.(B28). It is(B52) 
 F=  1 - 1/3 (1 - q)(P - 1)²(3 - P)(1 + P - Q - ε C P/2)(1 + ß(0)(-1)k) - ( )3

P (1 + D), (B52) 
 
 s=  2 - k + ε C + (2kQ - κP) + ( )3

Q : 1/k (P-1)(P-2)(P-3) (B53) 
 
 b1=  [P { 7 + 6(1 - q)(C - ( )2

P ) - 2q (1 - ( )2
P )} + κ Q{(3 Z - 1) B + 1}] (2 - k) + 

 + ½ (1 - κ){(q - εqx - 2) Q + ε C P + 2 (P + 1) -  }(B54) 

 - (1 - q) 
P P

P P
( )

( ² )
−
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3

1 1
 (4 B - 6 + P)}(k - 1) - ( )3

P (q - ε qx) 

 

 b2= B(5B+3) + 
2 3

1
H
P

−
+

 + Ck{B( 3B+2(H+1)) + H + ½ }(1 - q) - Q {B(2(B+H) - 1) + 

  +  H/2  + 3} + κ q {B (3B + 1) - 5/2}(k-Q) - ( )2
P P²(P + Q)²[8B+1 - 

  -{5B - (2H+1)(1 + 2 ( )3
P - Q) + 2} q] - ( )2

P  H(1-q) - (B -3/4)²(P-1)(P-2)(P-3)(-1)k-1 +  
  + (Q-q)(1-q + Bq){3(H+B) + πe/η - q/4}(P+1)³(k-1) + κ{(-1)1-q [7HB+3(H+B)-5/2 +  
  + (1-q){H(3B-4) + B+7/2}](k-1) + Q ( )2

P {(2 -q)(1 + ε qx)[B/2(H+2) + ¾ ] +5/2HB +  

  + 3H - 
B
P

+
+

5
1

 } - 5/2 H² ( )3
P {q (1+π/3(2-q) η2,2) B - (2-q)(1 - q)}  (B55) 

with ß(0)  =  
2α
πe

  
1

1

2
−

+







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
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η
 (B56) 

 
and D  =  [1 + 4 q²(q - 1)(2q + 1)] - 1 η ß(0) (1-√η)4 P2+εq (P - 1)(q-1)q/2/(3√2)  (B57) 
 
   With the systems eq.(B3) to eq. (B14) and with the quantum numbers (Table I) the particular 
masses M can be calculated, and from eq.(B47) to eq.(B57) the life times T of all the multiplet 
components for N = 0 can be determined numerically and compared with empirical values (Table 
II). The life times T are shown in multiples of 10 - 8 seconds. 
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3.  The Sommerfeld Finestructure Constant: 
 
   In ϕ and ß(0) the finestructure constant α is contained. The value in chapter D, section 8 is 
calculated only approximately. Heim now also gives the exact formula for α: 
 
According to eq.(8.21) we get: 

 α 1
9
2

15− = −α
ϑ
π

²
( )

( ' )C  (B58) 

with 1 - C’ =  1 - 
1 1

1
2 2

1 1 1 2

2
+ −

+











η
ηη η

η

η
,

, ,

 = Kα (B59) 

With the abbreviation  

 D’  =  
( )2
9

5π
ϑ αK

  (B60) 

it follows for the reciprocal square of these solutions: 
 
 α(±)

-²  =  ½ D’²(1 ± 1 4− / '²)D  (B61) 
 
   With eq. (V/chapter E) the values for both branches are calculated:  
 
 α+ = 0.72973525 × 10 - 2   and   α -  =  0.99998589 (B62) 
 
 1/α(+)  =  137,03601 1/α( )  =  1,0000142 
 
which, compared with the empirical value (Nistler & Weirauch  2002) for the finestructure 
constant,  
 1/α(+)  =  137,0360114 ± 3.4 .10 - 8 
 
yields a value which falls into the tolerance region of measurement. The negative branch shows 
an extremely strong interaction, which probably is based on the inner connections of the four 
zones in an elementary particle. But Heim did not investigate this further.        
 
 
4. The Masses of Neutrino States 
 
   Supposing that in the central region of an elementary particle an euclidian metric rules, i.e. that 
there is no structure element, than that means: L(n) =  - Qn .  
 
   According to eq.(B15) it means that there also is no ponderable mass M0 . According to 
eq.(B16) to eq.(B21) it follows, that also the remaining structure zones are governed by an 
euclidian metric. In eq.(B3) then we must substitute  
 
 n = - Qn ,  m = - Qm ,  p = - Qp  und  σ = - Qσ , (B63)  
from which follows: 
 G + F + S = ϕ (B64) 
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   According to eq.(B49) generally ϕ ≠ 0  holds, in spite of   σ + Qσ = 0, and also  Φ ≠ 0 is not 
affected by the lower barrier of the n. m, p, σ .  If  Φ + ϕ ≠ 0, since  P > 0  or  Q > 0, then 
eq.(B49) yields a field mass unequal zero, in spite of eq.(B63). This field mass is not 
interpretable as a ponderable particle, but is - according to Heim - a kind of „spin-potence“ 
which as a „field catalyst“ permits transmutations of elementary particles or enforces the validity 
of  certain conservation principles  (angular momentum). This behaviour is equivalent to those 
properties which made the definition of neutrinos necessary by empirical reasons. 
 
   If according to eq.(B3) one substitutes for the mass of neutrinos in whole generality 
 
 Mν  =  µα+ (Φ + ϕ0) (B65) 
 
where  ϕ0 relates eq.(B49) to the lower bounds of  n, m, p, σ, than it follows, that Mν is 
determined only by the quantum numbers  k, κ, P, and Q . 
 
   For Mν(kPQκ) > 0  the following possibilities result: 
 
 Mν (1110)  =  Mν (1111)   and    Mν (1200) in the mesonic region, and 
 Mν (2110)               and Mν (2111) in the baryonic region. 
 
   In addition there is  another neutrino, which only transfers the angular momentum  Q = 1 and 
which is required by the ß-transfer. For this neutrino only the two possibilities exist: 
 
 Mν (2010)                   or Mν (1010). 
 
   Since in the case (2010) Mν < 0 would be, only Mν ( 1010) remains as a possibility for the ß-
neutrino. With i = 1,...,5 the possible neutrino states νi are: 
 
for k = 1:  ν1 (1010) , ν2 (1110), ν3(1200) 
for k = 2:  ν4 (2110) , ν5 (2111). 
 
   For each νi there exists the mirror-symmetrical anti-structure νi . From eq.(B3) with the 
possibly non-zero quantum numbers the neutrino-masses may be determined. 
 
The calculated results are collected in table II. The masses are given in electron volt.  
 
   The empirical ß-neutrino can be interpreted by  ν1  and the empirical  µ-neutrino by  ν2. 
For the time being it cannot be decided whether the rest of the neutrinos also are implemented in 
nature or whether it concerns merely logical possibilities.  
 
 
5.  Concluding Remarks 
 
   For the numerical investigation of the states N > 0  the system (B32) must be used, which is 
uncertain because of the uncertain relations eq.(B33) to eq.(B36). The function  z(N) in eq.(B37)  
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must still be determined. Since  z  is not given, also Q(N) for  N > 0 remains  
unknown. The mass values of the spectra N > 0 which belong to the basic states therefore still  
have an approximate character. Also the life times TN of such states cannot be described yet. In 
eq.(B49) the free eligible parameters for the expression ϕ  with eq.(B50) were fitted by empirical 
facts   [i.e. 24 2, ( / )π e  and 4 1 24π /  ] .     
 
   The error Q(N) = Q(0) = Q based on the approximation  z = 0 for all of the N only causes an 
approximation error less than 0.1 MeV. 
 
   In spite of the mentioned uncertainties the numerical calculation of the relations eq.(B22) to 
eq.(B36) and eq.(B3) yields a spectrum of excitations for each basic state, whose limits are given 
by eq.(XXXV) with eq.(B32), and whose finestructure is described by eq.(B39).  
 
   In these spectra of excitation all empirical masses of short living resonances fit which were 
available to Heim at that time (CERN - Particle Properties - 1973). But there are much more 
theoretical excitation terms than were found empirically. That could be caused either by the 
existence of a yet unknown selection rule for N, or the selection rule is only pretended since the 
terms are not yet recordable by measurements.  
 
   In the tables IV and V Heim listed only such states N > 0 which seem to be identical with 
empirical resonances. The N-description in the third column differs between N and N , where the 
underlining means that a term is addressed which does not fit the selection rule for N of the 
masses  M(NB) - M(NA) > 0 with  NB  > NA . The values put in brackets in the 3rd and 4th column 
(with KB from eq.(B39) ) are related to possible electrically charged components. For the ∆ - 
states,  q = 2  was used. In the 5th column, the theoretical masses in MeV  are indicated. 
 
   Here also the brackets are related to electrically charged components. The resonance states in 
general are represented very well, in spite of the approximate character (because ofz(N) = 0), but 
the uncertainty appears for  k = 1  in the particles  ω(783) and  η’(958), as well as for k = 2 in the 
particle N(1688).    
 
   While the functions z(N) and TN  yet have been searched for by Heim, he already possessed an 
ansatz for a unified description of magnetic spin moments of particles with Q ≠ 0, which was not 
yet published. 
 
   After discovering z and TN, Heim wanted to calculate the cross sections of interaction, which 
regrettably could not more be done.   
 
   Apart from the above-mentioned incompleteness, it can be stated that on the basis of the far-
reaching correspondence with the empirical data Heim’s structure theory meets all requirements 
to be fulfilled by a mathematical scheme for a unified theory, and there is no other unified 
structure theory which allows for more exact or much better confirmed descriptions of the 
geometro-dynamical processes within the microregion.  
 


